您现在的位置是: 首页 > 分数线 分数线

物理高考必背知识点汇总,物理高考必会

tamoadmin 2024-07-11 人已围观

简介1.高考物理必考知识点公式2.2023高考物理必考知识点3.物理高考必背知识点是什么?4.高考物理必考电学知识点有哪些?5.宁夏高考涉及的物理公式有哪些6.物理高考必考公式高考物理知识点总结一、力 物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生

1.高考物理必考知识点公式

2.2023高考物理必考知识点

3.物理高考必背知识点是什么?

4.高考物理必考电学知识点有哪些?

5.宁夏高考涉及的物理公式有哪些

6.物理高考必考公式

物理高考必背知识点汇总,物理高考必会

高考物理知识点总结一、力 物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力(1)重力是由于地球对物体的吸引而产生的.

[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面处G/=mg/,其中g/=[R/(R+h)]2g

(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.

3.弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.

②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.

★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.

4.摩擦力

(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.

②平衡法:根据二力平衡条件可以判断静摩擦力的方向.

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.

5.物体的受力分析

(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.

(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.

(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态. 6.力的合成与分解

(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.

(3)力的合成:求几个已知力的合力,叫做力的合成.

共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .

(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).

在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.

7.共点力的平衡

(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.

(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.

(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy =0.

(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.

二、直线运动

1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.

2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.

路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.

4.速度和速率

(1)速度:描述物体运动快慢的物理量.是矢量.

①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.

②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.

(2)速率:①速率只有大小,没有方向,是标量.②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.

5.加速度

(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.

(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示.

(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致.

[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.

6.匀速直线运动 (1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.

(2)特点:a=0,v=恒量. (3)位移公式:S=vt.

7.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.

(2)特点:a=恒量 (3)★公式: 速度公式:V=V0+at 位移公式:s=v0t+ at2 速度位移公式:vt2-v02=2as 平均速度V=

以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.

8.重要结论

(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l –Sn=aT2 =恒量

(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即: 9.自由落体运动

(1)条件:初速度为零,只受重力作用. (2)性质:是一种初速为零的匀加速直线运动,a=g.

(3)公式:

10.运动图像

(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;

②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;

③图像与横轴交叉,表示物体从参考点的一边运动到另一边.

(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;

②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.

③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.

④图线与横轴交叉,表示物体运动的速度反向.

⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.

三、牛顿运动定律

★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.

(1)运动是物体的一种属性,物体的运动不需要力来维持.

(2)定律说明了任何物体都有惯性.

(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.

(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.

2.惯性:物体保持匀速直线运动状态或静止状态的性质.

(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度.

★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F 合 =ma

(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.

(2)对牛顿第二定律的数学表达式F 合 =ma,F 合 是力,ma是力的作用效果,特别要注意不能把ma看作是力.

(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.

(4)牛顿第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma与F 合 的方向总是一致的.F 合 可以进行合成与分解,ma也可以进行合成与分解.

4. ★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.

(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.

(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.

5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.6.超重和失重

(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题

①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.

③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等. 6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。

四、曲线运动万有引力

1.曲线运动

(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线 (2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动.

(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等.

2.运动的合成与分解

(1)合运动与分运动的关系:①等时性;②独立性;③等效性.

(2)运动的合成与分解的法则:平行四边形定则.

(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动.

3. ★★★平抛运动

(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动.

(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.

①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);

②由两个分运动规律来处理(如右图). 4.圆周运动

(1)描述圆周运动的物理量

①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向

②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度.其方向在中学阶段不研究.

③周期T,频率f ---------做圆周运动的物体运动一周所用的时间叫做周期.

做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率.

⑥向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小.大小 [注意]向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力.

(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动.

(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小).一般而言,合加速度方向不指向圆心,合力不一定等于向心力.合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度. ①如右上图情景中,小球恰能过最高点的条件是v≥v临 v临由重力提供向心力得v临 ②如右下图情景中,小球恰能过最高点的条件是v≥0。5★.万有引力定律

(1)万有引力定律:宇宙间的一切物体都是互相吸引的.两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.

公式:

(2)★★★应用万有引力定律分析天体的运动

①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.即 F引=F向得:

应用时可根据实际情况选用适当的公式进行分析或计算.②天体质量M、密度ρ的估算:

(3)三种宇宙速度

①第一宇宙速度:v 1 =7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度.

②第二宇宙速度(脱离速度):v 2 =11.2km/s,使物体挣脱地球引力束缚的最小发射速度.

③第三宇宙速度(逃逸速度):v 3 =16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.

(4)地球同步卫星

所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度 同步卫星的轨道一定在赤道平面内,并且只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着.

(5)卫星的超重和失重

“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同.“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.

五、动量

1.动量和冲量

(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.

(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.

2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p 或 Ft=mv′-mv

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.

(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.

(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.

(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.

★★★ 3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

表达式:m 1 v 1 +m 2 v 2 =m 1 v 1 ′+m 2 v 2 ′

(1)动量守恒定律成立的条件

①系统不受外力或系统所受外力的合力为零.

②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.

③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.

(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.

4.爆炸与碰撞

(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.

(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.

5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.

六、机械能

1.功

(1)功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.

定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角.

(2)功的大小的计算方法:

①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间内平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.

(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.

发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热) 2.功率

(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.

(2)功率的计算 ①平均功率:P=W/t(定义式) 表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角.

(3)额定功率与实际功率: 额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.

(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率.

①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动, .

②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。 3.动能:物体由于运动而具有的能量叫做动能.表达式:Ek=mv2/2 (1)动能是描述物体运动状态的物理量.(2)动能和动量的区别和联系

①动能是标量,动量是矢量,动量改变,动能不一定改变;动能改变,动量一定改变.

②两者的物理意义不同:动能和功相联系,动能的变化用功来量度;动量和冲量相联系,动量的变化用冲量来量度.③两者之间的大小关系为EK=P2/2m

4. ★★★★动能定理:外力对物体所做的总功等于物体动能的变化.表达式 (1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变力及物体作曲线运动的情况. (2)功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式.

(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷.

(4)当物体的运动是由几个物理过程所组成,又不需要研究过程的中间状态时,可以把这几个物理过程看作一个整体进行研究,从而避开每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.

5.重力势能

(1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能, .

①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的.②重力势能的大小和零势能面的选取有关.③重力势能是标量,但有“+”、“-”之分.

(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关.WG =mgh.

(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值.即WG = - .

6.弹性势能:物体由于发生弹性形变而具有的能量.

高考物理必考知识点公式

高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。

高中物理重要公式与二级结论。

一.力?物体的平衡:

1.N个力平衡,则任意一个力与其它力的合力等大反向。.

2.三个大小相等的力平衡,力之间的夹角为120度

3.物体沿斜面匀速下滑,则?.

4.两个一起运动的物体“刚好脱离”时:?

恰接触不挤压,弹力为零。此时速度、加速度相等,此后不等.

5.同一根轻绳上的张力处处相等。.

6.物体受三个不共线力而处于平衡状态,则这三个力必交于一点(三力汇交原理).

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:

1.匀变速直线运动:?

平均速度:

时间等分时:

中间位置的速度:?

纸带处理求速度、加速度:?

2.初速度为零的匀变速直线运动的比例关系:

等分时间:相等时间内的位移之比 ?1:3:5:……

等分位移:相等位移所用的时间之比 ?

3.竖直上抛运动的对称性:t上=?t下,V上=?-V下

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.

5.“S=3t+2t2”:a=4m/s2 ,V0=3m/s.

6.追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.

7.运动的合成与分解中:

船头垂直河岸过河时,过河时间最短.

船的合运动方向垂直河岸时,过河的位移最短.

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.

三.牛顿运动定律:

1.超重、失重(选择题可直接应用,不是重力发生变化)

超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).

2.几个临界问题:?   ?

3.速度最大时往往合力为零:

4.牛顿第二定律的瞬时性:

不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.

四.圆周运动、?万有引力:

1.向心力公式:?.?

2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.

3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.

4.竖直平面内的圆运动:

(1)“绳”类:最高点最小速度

(此时绳子的张力为零),最低点最小速度

(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度

5.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质量)}.

6.万有引力定律:F=GMm/r2?=mv2/r=mω2r=m4π2r/T2?(G=6.67×10-11N?m2/kg2)

7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2?(黄金代换式)

8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2?

(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)

9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s

10.地球同步卫星:T=24h,h=3.6×104km=5.6R地 (地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)

11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)

12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

13。物体在恒力作用下不可能作匀速圆周运动

14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):?,其中T1<T2。

五.机械能:

1.求功的途径:

①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.

③由图象求功.④用平均力求功(力与位移成线性关系).

⑤由功率求功.

2.功能关系--------功是能量转化的量度,功不是能.

⑴重力所做的功等于重力势能的减少(数值上相等)

⑵电场力所做的功等于电势能的减少(数值上相等)

⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)

⑷分子力所做的功等于分子势能的减少(数值上相等)

⑷合外力所做的功等于动能的增加(所有外力)

⑸只有重力和弹簧的弹力做功,机械能守恒

⑹克服安培力所做的功等于感应电能的增加(数值上相等)

(7)除重力和弹簧弹力以外的力做功等于机械能的增加

(8)功能关系:摩擦生热Q=f?S相对?(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)

(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。

(10)作用力和反作用力做功之间无任何关系,?但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。

3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.

4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f (注意额定功率和实际功率).

5.00≤α<900?做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).

6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.

六.动量:

1.同一物体某时刻的动能和动量大小的关系:?

2.碰撞的分类?:

①弹性碰撞——动量守恒,动能无损失

②完全非弹性碰撞——?动量守恒,动能损失最大。(以共同速度运动)

③非完全弹性碰撞——?动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间(大物碰静止的小物,大物不可能速度为零或反弹)

3.一维弹性碰撞:?动物碰静物:V2=0,?

(质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转)

4.A追上B发生碰撞,满足三原则:

①动量守恒?②动能不增加③合理性原则{A不穿过B(?)}

5.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时

②弹簧恢复原长时,A、B球速度有极值:若MA≥MB时,B球有最大值,A球有最小值;若MA<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)

6.解决动力学问题的三条思路:力、功能、动量

七.机械振动和机械波:

1.物体做简谐振动:

①在平衡位置达到最大值的量有速度、动能

②在最大位移处达到最大值的量有回复力、加速度、势能

③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向

④经过半个周期,物体运动到对称点,速度大小相等、方向相反。

⑤经过一个周期,物体运动到原来位置,一切参量恢复。

2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”

3.波动图形上,介质质点的振动方向:“上坡下,下坡上”;振动图像中介质质点的振动方向为“上坡上,下坡下”.(要区分开)

4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比(机械波的波速只有介质决定)。

5.波动中,所有质点都不会随波逐流,所有质点的起振方向都相同?

6.两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。波峰与波峰(波谷与波谷)相遇处振动加强(△s=?±?kλ?k=0、1、2、3……);波峰与波谷相遇处振动减弱(△s=?±(2k+1)λ/2?k=0、1、2、3……)干涉和衍射是波的特征。

7.受迫振动时,振动频率等于驱动力频率,与固有频率无关.只有当驱动力频率等于固有频率时会发生共振.

八.热学

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10—10米,原子核直径数量级10—15米

2.分子质量m=M/N?(M为摩尔质量,N为阿伏加德罗常数);分子体积为V0=V/N?(V为摩尔体积,注意:如果是气体,则为分子的占有体积)

3.布朗运动是微粒的运动,不是分子的运动.

4.分子势能用分子力做功来判断,r0处分子势能最小,分子力为零.

5.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变化看温度,做功情况看体积,吸放热则综合前两项考虑

6.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。

九.电场:

1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):?。

2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。

3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.

4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.

5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.

6.电容器接在电源上,电压不变;?断开电源时,电容器电量不变;改变两板距离,场强不变。

7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。

8.带电粒子在交变电场中的运动:

①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)

②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①

③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.

9.沿电场线的方向电势越来越低,电势和场强大小没有联系.

十.恒定电流:

1.电流的微观定义式:I=nqsv

2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。

3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,?与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,?与它串联的电阻上电流或电压变大.

4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。

外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。

5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。

6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),;

7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。

恒定电流实验:

1.?考虑电表内阻的影响时,电压表和电流表在电路中,?既是电表,又是电阻。

2.?选用电压表、电流表:

①?测量值不许超过量程。

②?测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。

③?电表不得小偏角使用,偏角越小,相对误差越大?。

3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.

4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;?选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。

5.分压式和限流式电路的选择:

①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。?

②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。

③用限流式时不能保证用电器安全时用分压式。

④分压和限流都可以用时,限流优先(能耗小)。

6.伏安法测量电阻时,电流表内、外接的选择:

①RX远大于RA时,采用内接法,误差来源于电流表分压,测量值偏大;

②RV远大于RX时,采用外接法,误差来源于电压表分流,测量值偏小.

③?大于?时,?采用内接法;?小于?时,?采用外接法

7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏

8.测电阻常用方法:

①伏安法?②替代法?③半偏法?④比较法

9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.

10.欧姆表的中值电阻刚好等于其欧姆表的内阻.

十一.磁场:

1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心

2.粒子速度垂直于磁场时,做匀速圆周运动:?,?(周期与速率无关)。

3.粒子径直通过正交电磁场(离子速度选择器):粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角

4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小

5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径

6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.

7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。

8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。

十二.电磁感应:

1.?楞次定律的若干推论:

(1)内外环电流或者同轴的电流方向:“增反减同”

(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

(3)磁场“╳增加”与“?减少”感应电流方向一样,反之亦然。

(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势

2.运用楞次定律的若干经验:

①内外环电路或者同轴线圈中的电流方向:“增反减同”

②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

③“×增加”与“?减少”,感应电流方向一样,反之亦然。

④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。?通电螺线管外的线环则相反。

⑤楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

⑥感应电流的方向变否,可以看B-t图像中斜率正负是否变化.

3.磁通量的计算中,无论线圈有多少匝,计算时都为φ=BS

4.自感现象中,灯泡是否闪亮,要看后来的电流是否比原来大,若是,则闪亮,否则不闪亮.日光灯线路连接.

5.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

6.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。

7.直杆平动垂直切割磁感线时所受的安培力:?

8.转杆(轮)发电机:

9.感生电量:?

十三.交流电:

1.正弦交流电的产生:

中性面为垂直磁场方向,此时磁通量最大,磁通量的变化率为零,电动势为零

线圈平面平行于磁场方向时,?此时磁通量最小,磁通量的变化率最大,电动势最大。

最大电动势:?与Em此消彼长,一个最大时,另一个为零。

2.交流电中,注意有效值和平均值的区别,能量用有效值,电量用平均值.

3.求电量的方法有两种:①用平均电动势得q=nΔφ/R?②动量定理

4.非正弦交流电的有效值的求法:I2RT或U2T/R等于一个周期内产生的总热量.

5.理想变压器原副线之间量的决定关系:电压原线圈决定副线圈;电流副线圈决定原线圈;功率副线圈决定原线圈

6.变压器中说负载增加,实为并联的用电器增多,负载电阻减小.

7.远距离输电计算的思维模式要记好.

8.自藕变压器和滑动变阻器,电流互感器和电压互感器要区分.

9.理想变压器原副线圈之间相同的量:?

十四.电磁场和电磁波:

1.电磁振荡中电容器上的电量q与电流i的关系总是相反。

2.?电磁场理论?:

 ①变化的磁(电)场产生电(磁)场

 ②均匀变化的磁(电)场产生的稳定的电(磁)场

 ③周期性变化的磁(电)场产生周期性变化的电(磁)场

3.感抗为XL=2πLf;容抗为XC=1/2πfc

十五.光的反射和折射:

1.光通过平行玻璃砖,出玻璃砖时平行于原光线;光过棱镜,向底边偏转.

2.光线射到球面和柱面上时,半径是法线.

3.单色光对比的七个量:偏折角、折射率、波长、频率、介质中的光速、光子能量、临界角.

4.可见光中:红光的折射率最小,紫光的折射率最大;红光在介质中的光速最大,紫光在介质中的光速最小;红光最不易发生全反射,紫光最易发生全反射;红光的波动性比紫光强,粒子性比紫光弱;红光的干涉条纹(或衍射条纹的中间条纹)间距比紫光大;紫光比红光更易引起光电效应.

5.视深公式h’=h/n?(水中看七色球,感觉红球最深,紫球最浅)

十六.光的本性:

1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):?。

2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。

3.薄膜干涉中用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸(左凹右凸)。

4.电磁波穿过介质面时,频率(和光的颜色)不变。

十七.量子论初步

1.个别光子表现出粒子性;大量光子表现出波动性

2.跃迁中,从n能级跃迁到基态时,将会放出Cn2种不同频率的光.

3.能引起跃迁的,若用光照,能电离可以,否则其能量必须等于能级差,才能使其跃迁;若用实物粒子碰撞,只要其动能大于(或等于)能级差,就能跃迁.

4.个别光子表现为粒子性,大量光子表现为波动性.

十七.原子物理:?

1.磁场中的衰变:外切圆是?衰变,内切圆是?衰变,半径与电量成反比。

2.衰变方程、人工核转变、裂变、聚变这四种方程要区分

3.1u相当于931.5MeV,注意题目中的质量单位是Kg还是u.?

4.核反应总质量增大时吸能,总质量减少时放能,仅在人工转变中有一些是吸能的核反应。

其它常见非常有用的经验结论:

1、物体沿倾角为α的斜面匀速下滑------?=tanα?;

物体沿光滑斜面滑下a=gsinα物体沿粗糙斜面滑下a=gsinα-gcosα

2、两物体沿同一直线运动,在速度相等时,距离?有最大或最小;

3、物体沿直线运动,速度最大的条件是:?a=0或合力为零?。

4、两个共同运动的物体刚好脱离时,两物体间的弹力为?=0?,加速度?相等?。

5、两个物体相对静止,它们具有相同的?速度?;

6、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。

7、一定质量的理想气体,内能大小看?温度,做功情况看体积?,吸热、放热综合以上两项用能量守恒定律分析。

8、电容器接在电源上,?电压?不变;断开电源时,电容器上电量不变;改变两板距离?E?不变。

10、磁场中的衰变:外切圆是?α衰变,内切圆是?β?衰变,α,β是大圆。

11、直导体杆垂直切割磁感线,所受安培力F=?B2L2V/R。

12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=?N△Ф/R。

13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。

2023高考物理必考知识点

高考物理必考知识点公式如下:

1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)。

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总。

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2。

4.理想变压器原副线圈中的电压与电流及功率关系。

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出。

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕。

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

高考物理解题技巧如下:

1、充分理解题意:在解题前,需要仔细阅读题目,并明确题目要求和问题所涉及的物理知识点。理解题目可以帮助考生正确解读题目,避免漏看题目细节和误解题目意思。

2、画图辅助理解:在解决一些需要空间想象的题目时,画图可以辅助理解问题,弥补我们对复杂的空间模型或物理问题的认知。画图可以使思路更加清晰,并帮助我们更好地理解物理知识和解题方法。

3、善于利用公式和定律:物理学科是一门公式和定律丰富的学科,考生需要熟练掌握各种公式和定律,并能够灵活运用这些知识点解决问题。建议考生在考前背诵并熟练掌握重要的公式和定律。

4、利用近似处理:在高考物理中,有些问题需要进行快速的近似处理,避免使用过于复杂或精确的方法。熟悉并理解近似处理的方法可以让考生更加轻松和高效地解决问题。

5、每道题要有多种思路:考生要具备多种思路解决同一道题的能力。这也是考高分的关键之一。当一种解法无法得出正确结果时,立即换一种解法,避免耽误太多时间,提高解题效率。

6、对不确定的答案进行推演:在遇到答案不确定的情况下,考生可以借助推演的方式,根据定律和物理规律得出正确答案。例如,对于有些数值型问题,以科学计数法的形式估算答案的量级,这样可以有效帮助考生筛选出正确答案或者发现答案计算有误的情况。

7、利用单位简化计算:高考物理中,单位的分类、转换和计算非常重要。对于一些复杂包含单位的题目,将单位进行简化或单位制进行换算可以大大简化计算,减少失误。

8、拓宽物理实验和观察经验:物理实验和观察是掌握物理知识的重要途径。建议考生多参加物理实验和观察,培养对实际物理现象的理解和认知。通过实验和观察,可以加深对物理概念和原理的理解,从而更好地应用到高考物理题目中。

9、确定问题策略:在高考物理中,策略的选择尤为重要。例如,对于一些需要通过测量来获取物理量的题目,要选择使用合适的测量设备和方便的测量方法。还要注意实验误差的估计和控制。在解决热运动问题时,可以利用统计的思路,应用概率和统计的方法解决问题。

10、提高数字运算技巧:高考物理多是数值计算,加减乘除、化简分式、发掘某些常数特殊的表达式都需要熟练掌握。数量级的转换、小数的运算等都需考生熟练掌握。

物理学科有一定的难度,考生需要通过多种方式和方法提高解题能力。建议考生平时加强物理知识的学习和理解,注重实际应用,多做练习和真题,以提高解题技巧和能力。物理学科给人的感觉是既抽象又实际,并且需要一定的数学基础。只有在平日里打好物理的基础,同时熟悉掌握以上高考物理解题技巧,才能在高考中做到应对自如,取得高分。

高考物理解题注意事项:

1、注意题目类型和考点:不同类型的题目考察的内容和考点可能不同。考生在答题前应先判断题目类型和涉及到的考点,对于重中之重的考点要特别重视。

2、仔细读题、画图和注明符号:解题前必须认真阅读题目,了解题目要求和所涉及的物理知识点。解题时可以结合画图和注明符号,既能帮助理解题目,也能避免因符号不明确或遗漏产生错误。

3、善于利用公式和定律:考生需要熟记并掌握各种公式和定律,遇到问题时要尽可能把问题转化为公式的形式,从而更容易解决问题。

4、更加注重计算过程和单位的掌握:计算过程和单位的掌握对于得出正确结论非常重要,因此在解题时,要重视计算过程的准确性和单位的统一转换。

5、防止粗心大意和反悔现象:高考物理解题就不容许粗心大意。为了避免反悔现象,考生需要在解题前仔细思考,构建行之有效的解题计划和思路,做到耐心认真,避免大意失荆州。

高考物理解题需要考生掌握科学的解题方法和技巧,力争做到准确、快捷、规范。同时,考生还应该注重平时的学习,加强物理知识的积累和巩固,提高解题的能力和水平。在解题的同时,还需要注重学习方法和策略,有利于提高解题效率和准确率,从而在高考中取得好成绩。

物理高考必背知识点是什么?

2023高考物理必考知识点有牛顿运动定律、动能定理、机械能守恒定律等。

1、牛顿运动定律的综合应用问题。

牛顿运动定律是高考重点考查的内容,每年都会在高考中都会出现。牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强。

2、动能定理。

动能定理:w为外力对物体所做的总功,m为物体质量,v为末速度,为初速度。解答思路为:1、选取研究对象,明确它的运动过程。2、分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。3、明确物体在过程始末状态的动能和。4、列出动能定理的方程。

3、机械能守恒定律。

机械能守恒定律:只有重力或弹力做功,没有任何外力做功。解答思路为:1、选取研究对象。2、根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。3、恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。4、根据机械能守恒定律列方程,进行求解。

备战高考需要注意的事情:

1、?制定合理的学习计划。

合理规划每天的学习时间,包括各科目的复习和模拟考试。确保有足够的时间来复习和巩固知识。

2、对重点科目加强复习。

确定高考科目的重点内容,并着重复习和理解。对于自己较薄弱的科目,可以请教老师或同学,寻求帮助。

3、注意健康和心理状态。

保持良好的生活习惯,充足的睡眠和饮食,避免熬夜和过度疲劳。同时,保持积极的心态,避免压力过大,适度放松自己。

高考物理必考电学知识点有哪些?

物理高考必背知识点:

1、力

力学是高中物理的开山和基础,弹力的方向和弹簧、摩擦力应该是一轮复习的重中之重,受力分析的判断不仅关乎到这个部分,也会影响整个物理学科,所谓武学基础——“蹲马步”。

2、运动学

这个部分是看起来简单,但做起来易错,且计算不算死人不罢休的境界,各种刹车、追击、相遇、滑块板块、传送带,没有做题底蕴的支撑,你会感到深深的恶意。

3、牛顿定律

牛顿就是力学中的隐藏高手,就是王者荣耀中的法师,攻击力本来就不错,还可以对运动学、电场进行加持,让你面对的陡然上升了几个level功力。连接体是这里面一轮要拿下的核心考点。

4、曲线运动

两大法宝:平抛和圆周,不能说难,但是高考年年出现,平抛的计算、水平圆周模型、竖直圆周模型、向心和离心的机车拐弯。

宁夏高考涉及的物理公式有哪些

1.两种电荷、电荷守恒定律、元电荷:(e=1.60?10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0?109N?m2/C2,Q1、Q2:两点电荷的电量(C),

r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的.距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=?A-?B,UAB=WAB/q=-?EAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),

UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=q?A{EA:带电体在A点的电势能(J),q:电量(C),?A:A点的电势(V)}

10.电势能的变化?EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化?EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

物理高考必考公式

一、力学公式 1、 胡克定律: F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g随高度、纬度、地质结构而变化) 3 、求F、 的合力的公式: F= 合力的方向与F1成角: tg= 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F1-F2 F F1 +F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 F=0 或Fx=0 Fy=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= N 说明: a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G b、 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= Vg (注意单位) 7、 万有引力: F=G (1). 适用条件 (2) .G为万有引力恒量 (3) .在天体上的应用:(M一天体质量 R一天体半径 g一天体表面重力 加速度) a 、万有引力=向心力 G b、在地球表面附近,重力=万有引力 mg = G g = G c、 第一宇宙速度 mg = m V= 8、库仑力:F=K (适用条件) 9、 电场力:F=qE (F 与电场强度的方向可以相同,也可以相反) 10、磁场力: (1) 洛仑兹力:磁场对运动电荷的作用力。 公式:f=BqV (BV) 方向一左手定 (2) 安培力 : 磁场对电流的作用力。 公式:F= BIL (BI) 方向一左手定则 11、 牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同体性 (5)同系性 (6)同单位制 12、匀变速直线运动: 基本规律: Vt = V0 + a t S = vo t + a t2几个重要推论: (1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的即时速度: Vt/ 2 = = (3) AB段位移中点的即时速度: Vs/2 = 匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2 (4) 初速为零的匀加速直线运动,在1s 、2s、3s……ns内的位移之比为12:22:32 ……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1: : ……( (5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a一匀变速直线运动的加速度 T一每个时间间隔的时间) 13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为g的匀减速直线运动。 (1) 上升最大高度: H = (2) 上升的时间: t= (3) 上升、下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t = (6) 适用全过程的公式: S = Vo t 一 g t2 Vt = Vo一g t Vt2 一Vo2 = 一2 gS ( S、Vt的正、负号的理解) 14、匀速圆周运动公式 线速度: V= R=2 f R= 角速度:= 向心加速度:a = 2 f2 R 向心力: F= ma = m 2 R= m m4 n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。 (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。 (3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。 15 直线运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo 竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t tg = Vy = Votg Vo =Vyctg V = Vo = Vcos Vy = Vsin y Vo 在Vo、Vy、V、X、y、t、七个物理量中,如果 x ) vo 已知其中任意两个,可根据以上公式求出其它五个物理量。 vy v 16 动量和冲量: 动量: P = mV 冲量:I = F t 17 动量定理: 物体所受合外力的冲量等于它的动量的变化。 公式: F合t = mv’ 一mv (解题时受力分析和正方向的规定是关键) 18 动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体) 公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或p1 =一p2 或p1 +p2=O 适用条件: (1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。 (3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 (4)系统在某一个方向的合外力为零,在这个方向的动量守恒。 18 功: W = Fs cos (适用于恒力的功的计算) (1) 理解正功、零功、负功 (2) 功是能量转化的量度 重力的功------量度------重力势能的变化 电场力的功-----量度------电势能的变化 分子力的功-----量度------分子势能的变化 合外力的功------量度-------动能的变化 19 动能和势能: 动能: Ek = 重力势能:Ep = mgh (与零势能面的选择有关) 20 动能定理:外力对物体所做的总功等于物体动能的变化(增量)。 公式: W合= Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能 条件:系统只有内部的重力或弹力做功. 公式: mgh1 + 或者 Ep减 = Ek增 22 功率: P = (在t时间内力对物体做功的平均功率) P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比) 23 简谐振动: 回复力: F = 一KX 加速度:a = 一 单摆周期公式: T= 2 (与摆球质量、振幅无关) 弹簧振子周期公式:T= 2 (与振子质量有关、与振幅无关) 24、 波长、波速、频率的关系: V= f = (适用于一切波) 二、 热学: 1、热力学第一定律: W + Q = E 符号法则: 体积增大,气体对外做功,W为“一”;体积减小,外界对气体做功,W为“+”。 气体从外界吸热,Q为“+”;气体对外界放热,Q为“-”。 温度升高,内能增量E是取“+”;温度降低,内能减少,E取“一”。 三种特殊情况: (1) 等温变化 E=0, 即 W+Q=0 (2) 绝热膨胀或压缩:Q=0即 W=E (3)等容变化:W=0 ,Q=E 2 理想气体状态方程: (1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。 (2) 公式: 恒量 (3) 含密度式: 3、 克拉白龙方程: PV=n RT= (R为普适气体恒量,n为摩尔数) 4 、 理想气体三个实验定律: (1) 玻马—定律:m一定,T不变 P1V1 = P2V2 或 PV = 恒量 (2)查里定律: m一定,V不变 或或Pt = P0 (1+ (3) 盖吕萨克定律:m一定,T不变 V0 (1+ 注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。 三、电磁学 (一)、直流电路 1、电流强度的定义: I = (I=nesv) 2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R1+R2+R3 +……+Rn 并联: 两个电阻并联: R= 4、欧姆定律: (1)、部分电路欧姆定律: U=IR (2)、闭合电路欧姆定律:I = ε r 路端电压: U = -I r= IR R 输出功率: = Iε-I r = 电源热功率: 电源效率: = =RR+r (5).电功和电功率: 电功:W=IUt 电热:Q= 电功率 :P=IU 对于纯电阻电路: W=IUt= P=IU =( ) 对于非纯电阻电路: W=IUt P=IU 不是很全,不过差不多了

物理高考必考公式如下:

高中物理知识点总结一:直线运动

理解口诀:

1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2、运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

高中物理知识点总结二:曲线运动、万有引力

理解口诀:

1、运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2、圆周运动向心力,供需关系在心里,径向合力提供足,供求平衡不心离;物理方程很关键,一串公式是武器。

3、万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

高中物理知识点总结三:力(常见的力、力的合成与分解)

1)常见的力

2)力的合成与分解

四、动力学(运动和力)

五、振动和波(机械振动与机械振动的传播)

六、冲量与动量(物体的受力与动量的变化)

七、功和能(功是能量转化的量度)

八、分子动理论、能量守恒定律

九、气体的性质

十、电场

十一、恒定电流

十二、磁场

十三、电磁感应

十四、交变电流(正弦式交变电流)

文章标签: # 物体 # 方向 # 运动